二五、天命所致,他决定赌命一试(2/3)
,然后就给予了回答。龙空云不敢有丝毫的怠慢,或者直接去寻找自己的所需要的某个答案。因为此刻的他,是非常孤独的,那种绝对的孤独。他无法跟赵路远、周恒山来探讨他的发现,也绝无可能跟导师威廉姆·乔治教授和亲爱的妮娜来探讨。所以他唯一能“探讨”的对象,就是智能搜索。所以现在每一个字,每一个符号,都有可能给他带来极致的快意,或者极端的绝望。
他像一个在黑夜中看不到北极星的人,只能茫然地摸索着前行。作为独行人,他万般虔诚地揣摩着屏幕上的每一个文字词汇,每一个标点符号,它们是神谕,也是来自那“时空缝隙·七维世界”的旨意,他不能也不敢有丝毫的怠慢。
在几何学中,一条直线上的两个端点及其之间的一个点构成的基本关系可通过以下公理和性质描述:
线段定义:直线上任意两点之间的部分称为线段,这两个点称为线段的端点。若在两点之间添加一个点,该点将线段分为两条更小的线段。
合同公理:根据希尔伯特几何公理,线段AB与线段A‘B’的合同关系即长度相等是几何结构的基础。若点C位于线段AB之间,则AC + CB = AB,且AC与CB的合同性可通过公理传递性验证。
完美关系的数学表达:
等分性:若点C将线段AB等分为AC = CB,则C是AB的中点,此时关系最对称。
黄金分割:若AC/AB = CB/AC即比例满足黄金分割比,则具有美学上的完美性。
唯一性:通过两点确定一条直线,点C的位置唯一确定,符合“两点确定一直线”的公理。
实际应用中的意义
在书法或控笔练习中,通过两点确定直线方向,中间点的位置可帮助保持笔画的稳定性,体现几何与实用性的结合。
综上,最完美关系需满足数学上的对称性如等分或黄金分割与几何公理的一致性。
龙空云将这些生成的文字,一个字一个字地看了几遍,然后总算豁然开朗,他迅速判断出来一点,自己要去求证一下“黄金分割”这个问题。如果云崖大桥桥心的位置,刚好在“黄金分割点”上,那自己完全就可以迅速行动,而且基本上没有任何意外,这个中间桥墩的位置就是“时空缝隙”的大门。
接下来,他果断地继续搜索几何学上关于“黄金分割点”的定义。他知道作为黑夜中的独行者,他可能马上又要在某个黑夜中,一跃跳入云崖江大桥的中心水域,且不能让人发现或者洞察。现在,他唯一真诚祈求的,就是这些智能搜索的文字,给他更多的信息,更多的启发,更多的思维助力,更多的推理取胜。没有悲剧,欢天喜地。他如饥似渴地看着这些手机屏幕上的文字,此时是多么的睿智,不再是肤浅的海量数据检索,而是人类思维现阶段最高思维高度给正在沙漠中独行缺水的自己,送来了上苍安排的甘泉。
黄金分割点是一个有趣的数学概念,简单来说,就是把一条线段分成两部分,让其中一部分和整条线段的长度比,等于另一部分和这部分的长度比。这个神奇的比值大约是18,用分数来表示就是5-1/2。
比值特点:这个比值特别之处在于,按它来设计的造型,看起来会非常和谐、美丽,所以人们就把它叫做黄金分割,也叫中外比。
线段上的位置:一条线段上其实有两个这样的黄金分割点,一个在左边,一个在右边,它们把线段分成了两段特别美的比例。
所以很简单,按照公式,现在桥心点靠近古塔这一边,套用公式,看看三点间各自的距离,是不是形成这个“黄金分割点”的成立。
首先地图显示,从云崖古塔到云峰国际宾馆,直线距离是公里。
龙空云想也没想,就在智能搜索中输入:如果一条直线长为三点六公里,那么它的黄金分割点是多少?
不一会儿,系统经过计算,给出了答案:25公里。由于一条直线理论上是存在两个黄金分割点的。那么现在看,云崖大桥的中心桥墩点,靠近云崖古塔,离云峰国际宾馆稍远的位置,所以,只要测量出云峰国际宾馆到云崖大桥中心点的位置距离就行,如果接近25这个数值,那么一切探索,就尘埃落定。剩下的,就是“马上行动吧,我的孩子”。
这下龙空开始颤抖,他哆哆嗦嗦在地图上输入了“云崖大桥”四个字,然后点击“到这去”的按钮,迅速闭上眼睛,包含热泪,低声祈祷:“老天爷啊,老天奶啊,保佑啊,这个直线距-->>
他像一个在黑夜中看不到北极星的人,只能茫然地摸索着前行。作为独行人,他万般虔诚地揣摩着屏幕上的每一个文字词汇,每一个标点符号,它们是神谕,也是来自那“时空缝隙·七维世界”的旨意,他不能也不敢有丝毫的怠慢。
在几何学中,一条直线上的两个端点及其之间的一个点构成的基本关系可通过以下公理和性质描述:
线段定义:直线上任意两点之间的部分称为线段,这两个点称为线段的端点。若在两点之间添加一个点,该点将线段分为两条更小的线段。
合同公理:根据希尔伯特几何公理,线段AB与线段A‘B’的合同关系即长度相等是几何结构的基础。若点C位于线段AB之间,则AC + CB = AB,且AC与CB的合同性可通过公理传递性验证。
完美关系的数学表达:
等分性:若点C将线段AB等分为AC = CB,则C是AB的中点,此时关系最对称。
黄金分割:若AC/AB = CB/AC即比例满足黄金分割比,则具有美学上的完美性。
唯一性:通过两点确定一条直线,点C的位置唯一确定,符合“两点确定一直线”的公理。
实际应用中的意义
在书法或控笔练习中,通过两点确定直线方向,中间点的位置可帮助保持笔画的稳定性,体现几何与实用性的结合。
综上,最完美关系需满足数学上的对称性如等分或黄金分割与几何公理的一致性。
龙空云将这些生成的文字,一个字一个字地看了几遍,然后总算豁然开朗,他迅速判断出来一点,自己要去求证一下“黄金分割”这个问题。如果云崖大桥桥心的位置,刚好在“黄金分割点”上,那自己完全就可以迅速行动,而且基本上没有任何意外,这个中间桥墩的位置就是“时空缝隙”的大门。
接下来,他果断地继续搜索几何学上关于“黄金分割点”的定义。他知道作为黑夜中的独行者,他可能马上又要在某个黑夜中,一跃跳入云崖江大桥的中心水域,且不能让人发现或者洞察。现在,他唯一真诚祈求的,就是这些智能搜索的文字,给他更多的信息,更多的启发,更多的思维助力,更多的推理取胜。没有悲剧,欢天喜地。他如饥似渴地看着这些手机屏幕上的文字,此时是多么的睿智,不再是肤浅的海量数据检索,而是人类思维现阶段最高思维高度给正在沙漠中独行缺水的自己,送来了上苍安排的甘泉。
黄金分割点是一个有趣的数学概念,简单来说,就是把一条线段分成两部分,让其中一部分和整条线段的长度比,等于另一部分和这部分的长度比。这个神奇的比值大约是18,用分数来表示就是5-1/2。
比值特点:这个比值特别之处在于,按它来设计的造型,看起来会非常和谐、美丽,所以人们就把它叫做黄金分割,也叫中外比。
线段上的位置:一条线段上其实有两个这样的黄金分割点,一个在左边,一个在右边,它们把线段分成了两段特别美的比例。
所以很简单,按照公式,现在桥心点靠近古塔这一边,套用公式,看看三点间各自的距离,是不是形成这个“黄金分割点”的成立。
首先地图显示,从云崖古塔到云峰国际宾馆,直线距离是公里。
龙空云想也没想,就在智能搜索中输入:如果一条直线长为三点六公里,那么它的黄金分割点是多少?
不一会儿,系统经过计算,给出了答案:25公里。由于一条直线理论上是存在两个黄金分割点的。那么现在看,云崖大桥的中心桥墩点,靠近云崖古塔,离云峰国际宾馆稍远的位置,所以,只要测量出云峰国际宾馆到云崖大桥中心点的位置距离就行,如果接近25这个数值,那么一切探索,就尘埃落定。剩下的,就是“马上行动吧,我的孩子”。
这下龙空开始颤抖,他哆哆嗦嗦在地图上输入了“云崖大桥”四个字,然后点击“到这去”的按钮,迅速闭上眼睛,包含热泪,低声祈祷:“老天爷啊,老天奶啊,保佑啊,这个直线距-->>